
Computer-Aided Design 127 (2020) 102861

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

NormalF-Net: Normal Filtering Neural Network for Feature-preserving
Mesh Denoising
Zhiqi Li a, Yingkui Zhang b, Yidan Feng a, Xingyu Xie c, Qiong Wang b,∗, Mingqiang Wei a,∗,
Pheng-Ann Heng d

a School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
b Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of
Sciences, China
c School of Electronics Engineering and Computer Science, Peking University, China
d Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

a r t i c l e i n f o

Article history:
Received 26 March 2020
Accepted 16 April 2020

Keywords:
NormalF-Net
Normal filtering
Neural network
Low-rank matrix recovery

a b s t r a c t

Normal filtering is a fundamental step of feature-preserving mesh denoising. Methods based on
convolutional neural networks (CNNs) have recently made their debut for normal filtering. However,
they require complicated voxelization and/or projection operations for regularization, and afford
an overall denoising accuracy with few powers of preserving surface features. We devise a novel
normal filtering neural network algorithm, which we call as NormalF-Net. NormalF-Net consists of
two cascaded subnetworks with a comprehensive loss function. The first subnetwork learns mapping
from non-local patch-group normal matrices (NPNMs) to their ground-truth low-rank counterparts
for denoising, and the second subnetwork learns mapping from the recovered NPNMs to the ground-
truth normals for normal refinement. Different from existing learning-based methods, NormalF-Net,
which bridges the connection between CNNs and geometry domain knowledge of non-local similarity,
can not only preserve surface features when removing different levels and types of noise, but be
free of voxelization/projection. NormalF-Net has been validated on different datasets of meshes with
multi-scale features yet corrupted by noise of different distributions. Experimental results consistently
demonstrate clear improvements of our method over the state-of-the-arts in both noise-robustness
and feature awareness.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

3D scanning and sensing techniques have become widely ap-
plied to capture surface mesh data of physical objects. Recent
advances in these techniques have allowed breakthroughs in a
variety of application domains, such as reverse engineering [1–3],
machine vision guided tasks [4,5], biomedical engineering [6–9],
and cultural heritage preservation [10]. Although the 3D scanning
technology constantly improves, these devices generate abundant
noisy data that hinder subsequent geometry processing tasks
[11,12]. These challenging issues highlight the need for computa-
tionally inexpensive, parameter-free and high-fidelity approaches
for mesh denoising.

Mesh denoising, formulated as M∗
= M + ε, aims to recover

the ground-truth M from its observation M∗ corrupted by noise
ε. However, it is an ill-posed problem, since the clean mesh and

∗ Corresponding authors.
E-mail addresses: wangqiong@siat.ac.cn (Q. Wang), mqwei@nuaa.edu.cn

(M. Wei).

noise are all unknown in advance [13,14]. This is why there is a
significant interest in mesh denoising capable of improving the
quality of mesh models to make them maximally compliant with
their intended uses.

The key to success of mesh denoising is to remove noise while
preserving surface features as accurately as possible. In the litera-
ture, there are rich works on this topic, such as filter-based [15,16,
21–23], optimization-based [18,24,25], and learning-based meth-
ods [13,20,26,27]. Filter-based ones, which are mainly inherited
from ideas of image processing, utilize sophisticatedly-designed
regularities to preserve/recover surface features but with tedious
parameters adjustment, and they could not deal with meshes
with large-scale noise well. Optimization-based ones, which best
fit the noisy input and one or more priors of shape (e.g., piece-
wise flat) and/or noise (e.g., Gaussian noise along the mesh ver-
tex normal), may not be generalized to really-scanned meshes
with unseen shape and noise patterns. Currently, learning-based
methods have made their debut for mesh denoising based on
normal filtering. After learning mapping from the noisy inputs to
their ground-truth counterparts in an offline stage, they can be

https://doi.org/10.1016/j.cad.2020.102861
0010-4485/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cad.2020.102861
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2020.102861&domain=pdf
mailto:wangqiong@siat.ac.cn
mailto:mqwei@nuaa.edu.cn
https://doi.org/10.1016/j.cad.2020.102861

2 Z. Li, Y. Zhang, Y. Feng et al. / Computer-Aided Design 127 (2020) 102861

Fig. 1. Comparison of denoising approaches on the Armadillo mesh added by Gaussian noise (σE = 0.2). From the 1st row to the 2nd row: The ground truth, the
noisy mesh, the denoised results of Fleishman et al.’s BMF [15] with parameters (n = 10), Zheng et al.’s BNF [16] (σs = 0.35, n1 = 20, n2 = 10), Zhang et al.’s
GNF [17] (σr = 0.35, n1 = 20, n2 = 10), He et al.’s L0 minimization [18] (µ =

√
2, α = 0.1γ , λ = 0.02ℓ2eγ), Wei et al.’s PcFilter [19] (σs = 0.4, n1 = 2, n2 = 10), Zhao

et al.’s NormalNet [20], Wang et al.’s CNR [13], and our NormalF-Net.

automatically executed on new cases sharing similar geometry
and noise characteristics of the trained models in a runtime
stage. However, learning-based methods often involve compli-
cated voxelization and/or projection operations on the spatial and
topological irregular meshes for being compatible with current
CNN architectures. Moreover, we also show existing learning-
based methods solely pursue an overall denoising accuracy with
the loss of surface features to a certain extent.

Before the rise of CNNs in mesh denoising, geometry domain
knowledge (e.g., piecewise smoothness of the underlying sur-
face, sparseness of surface sharp features, and similarity of sur-
face patches, etc.) has been exploited in mesh filters, which are
quite helpful in removing noise while preserving surface features.
Although combining CNNs with geometry domain knowledge
is a promising direction for feature-preserving mesh denoising,
(1) geometry domain knowledge is difficult to be integrated into
the input of CNNs directly; and (2) these traditional filters can-
not tune parameters automatically to produce optimal denoising
results by learning from data.

More local structures (patches) than one with similar geom-
etry exist on a surface mesh, which is considered by existing
works [19,28] as geometry domain knowledge of non-local simi-
larity. These similar structures (represented by normals in each
structure/patch) can be grouped together to form a non-local
patch-group normal matrix (NPNM). Such NPNM should be low-
rank due to high linear correlation among these similar patches,
but actually possesses a high rank due to noise. Different from
existing non-local similarity-based mesh denoising techniques
which involve tedious parameters tuning and often lead to over-
fitting, we do not intend to devise a low-rank matrix recovery
model, but propose an automatical and non-local low-rank nor-
mal filtering neural network algorithm for feature-preserving
mesh denoising, which is called NormalF-Net. Specifically, we se-
lect similar patches and pack their normals to form an NPNM. By

simple operations, the column’s elements (lined up by a patch’s
normals) in NPNM are well arranged without disorder and in-
variant to rotation. Therefore, we can first develop a subnet-
work for denoising by learning mapping from noisy NPNMs to
their ground-truth low-rank counterparts, and then develop an-
other subnetwork for normal refinement by learning from the
recovered NPNMs to their ground-truth normals being processed.

Although we follow the practical two-stage framework of nor-
mal filtering and vertex updating, NormalF-Net is different from
existing mesh denoising approaches in four aspects:
(1) the runtime denoising stage of NormalF-Net is completely
automatic; (2) some learning-based methods have to apply vox-
elization/projection strategies to convert the irregular local struc-
tures of meshes [20] to structured formats for feeding into CNNs
[29], while our method can avoid such voxelization/projection
operations; (3) the first subnetwork of NormalF-Net mimics the
low-rank matrix recovery, whereas, such geometry domain
knowledge of non-local similarity is never integrated into
learning-based denoising methods; and (4) the single network
is insufficient to remove noise and preserve surface features si-
multaneously, while NormalF-Net, which absorbs the advantages
of both the traditional and learning-based methods, adopt dual
networks for denoising and normal refinement.

Our method shows clear improvements over the state-of-
the-arts in terms of noise-robustness and feature awareness, as
shown in Fig. 1. To the best of our knowledge, there are no works
that have designed such a denoising-and-normal-refinement neu-
ral network by using NPNMs. Overall, the contributions of the
proposed approach can be summarized in the following points:

• We propose a cascaded normal filtering neural network
algorithm, called NormalF-Net, which the first subnetwork is
responsible for denoising and the second subnetwork refines
normals for better feature preservation.

Z. Li, Y. Zhang, Y. Feng et al. / Computer-Aided Design 127 (2020) 102861 3

• Based on the geometry domain knowledge of non-local
similarity, we construct a series of non-local patch-group nor-
mal matrices (NPNMs) which can be easily fed into the net-
work without any complicated voxelization/projection operation.
Meanwhile, other learning-based geometric processing tasks may
benefit from our well-formatted NPNMs.

2. Related work

The main issue in mesh denoising is to remove noise while
preserving surface features. A variety of denoising-related meth-
ods have been proposed in recent years. We can roughly divide
them into three categories: filter-based, optimization-based, and
data-driven methods.

2.1. Filter-based methods

This type can be further divided into vertex-based and face-
based filtering schemes. The pioneering vertex-based filtering
schemes, such as Fleishman et al. [15] and Jones et al. [30], utilize
bilateral filters to adjust vertex positions directly.

A large number of works have focused on the normal filtering
framework to remove noise, aiming at developing more effective
strategies that carry out the smoothing through computing local
statistics on the normals, such as mean and median filtering [31],
alpha-trimming [32], fuzzy median [33], and bilateral normal
filtering [16]. Face-based filtering schemes first perform filtering
on face normals and then updating the positions of vertices to
match the filtered face normals accordingly.

To improve the feature-preserving capability of bilateral fil-
tering, Zhang et al. [17] successfully apply joint bilateral filtering,
in which the averaged normal of a most consistent local patch
is selected as the guidance information. In spite of that, the
construction of the guidance normal fails to adapt to complex
features, leading to unsatisfactory denoising performance around
these features. Subsequently, Li et al. [34] estimate guidance
normals by the corner-aware neighborhood, which compensates
the limitation in [17]. Assume that the normal change satisfies
piecewise constant, Wei et al. [35] propose to cluster faces into
piecewise smooth patches, and filter normals by leveraging com-
plementary information from both the vertex and face normal
fields. Another set of methods first detect the geometry features
from the noisy input via various techniques including quadric
fitting [36], element-based normal voting tensor [37], normal
variance clustering [35] and iterative graph-cut [38] and then
apply different filters that are adaptive to feature and non-feature
parts. Although the aforementioned strategies can recover strong
features, the shallow features are still difficult to be detected that
may lead to over-smoothing.

2.2. Optimization-based methods

This type formulates denoising as a geometrical optimization
problem, which is based on the input mesh information and a set
of constraints defined by the priors of the ground-truth geometry
and noise distribution.

Sparse optimization. Based on the observation that sharp
features may be sparse on 3D models, the position and normal
of vertex on the mesh can be combined to jointly measure the
smoothness of the local area and the sparsity of the geometric
features, so that the noise and features can be distinguished
accurately. For example, He et al. [18] employ an L0 norm to
minimize curvatures of a surface, except with sharp features.
Wang et al. [24] and Wu et al. [39] perform L1 optimization to
recover sharp features. Zhang et al. [25] combine total variation

and piecewise constant function space for variational mesh de-
noising. For these methods, it is often critical to correctly estimate
the differential geometry. Moreover, solving a global optimization
is typically at expensive time cost.

Nonlocal similarity and low-rank matrix recovery. Non-
local similarity is a powerful prior of natural images for image
denoising [40–43]. They find from robust statics that similar
patches exist on an image, which can be collaborated for handling
high-level artifacts in images. Nonlocal similarity has also applied
in 3D surface processing that produce promising denoising re-
sults [19,44]. In total, the normals in similar patches are used to
form a matrix; then, the normal estimation problem is regarded
as a low-rank matrix approximation problem, aiming at removing
different scales of noise while preserving surface features.

2.3. Data-driven methods

With the increasing popularity of CNNs, researchers in graph-
ics have attempted to employ deep neural networks for 3D model
processing. For instance, Wang et al. [13] propose a cascaded
learning model by mapping the filtered facet normal descriptor
(FND) extracted from the neighborhood of a noisy mesh facet to
the noise-free mesh facet normal, and use the modeled function
to compute new facet normals. Wang et al. [26] design a two-step
normal variation learning method by utilizing reverse normal fil-
ter, where the second step compensates for the loss of geometry
in the first learning step. Thus, the geometry features can be bet-
ter preserved. Zhao et al. [20] propose the Normal-Net to embed
deep network into guided normal filtering (GNF), which applies a
voxelization strategy on each face to transform the irregular local
structure into the regular volumetric representation.

Notably, some interesting denoising works on point cloud also
deserve our attention. PointNet [45] is one of the first network ar-
chitectures that can handle point cloud data. Subsequently, Roveri
et al. [46] propose point projection layer for converting unordered
points to regularly sampled height maps. Similar to [46], Chen
et al. [47] define a rotation-invariant height-map patch (HMP)
for each point and each HMP encodes the field of projection
distances from the surrounding points to the filtered tangent
plane of the target point. Besides, in [48], a discretized Hough
space representing normal directions is projected onto a structure
amenable to deep learning.

3. Overview

Mesh denoising usually involves the estimation of two con-
flicting components of the noisy surface: noise (to be removed)
and geometric details (to be preserved). By assuming that both
noise and geometric details to be high frequency and their mag-
nitudes to be similar to each other, it is challenging for a single
network to learn both components simultaneously. Even though
going deeper with plain neural networks cannot always lead
to better feature-preserving mesh denoising performance. This
motivates us to design a dual convolutional neural network.
NormalF-Net synergizes to denoise and refine the lost geometric
details caused by denoising.

Non-local similarity has been statically validated in noise re-
moval from images and surfaces with the steps of: (1) A local
window/patch is associated with the referred image pixel or
mesh facet. (2) Similar windows/patches of a noisy image/mesh
are grouped and reshaped as vectors (assembling pixel intensi-
ties or facet normals as the vector’s elements). (3) A non-local
patch-group matrix can be constructed by stacking these similar
patch-vectors as the matrix’s columns. (4) Due to its columns
being highly linearly correlated, this patch-group matrix should
be low-rank but currently possesses a high rank because of noise.

4 Z. Li, Y. Zhang, Y. Feng et al. / Computer-Aided Design 127 (2020) 102861

Fig. 2. NormalF-Net consists of the construction of non-local patch-group normal matrix (NPNM), the dual networks for denoising and normal refinement respectively,
and the operation of vertex updating. It iteratively learns mapping between the noisy geometry and the ground-truth geometry from a training dataset, and utilizes
the learned mappings for feature-preserving mesh denoising.

As a result, a low-rank matrix recovery model will be devised
to solve such a convex optimization problem by the traditional
denoising methods.

Instead of devising a low-rank matrix recovery model which
fine-tunes its parameters to avoid surface over-fitting, we mimic
the procedure of low-rank matrix recovery by learning between
the noisy geometry of non-local patches and the clean geometry
of their ground-truth counterparts for denoising. One more merit
is that we do not need any voxelization/projection operation,
since the non-local patch-group matrix has regularly encoded
the local patch geometry for feeding into current neural network
architectures.

After denoising, we learn between the recovered patch-group
normal matrix and the corresponding clean facet normal for nor-
mal refinement. At the top level, such a denoising-and-normal-
refinement neural network by using NPNMs is shown in Fig. 2.

4. NormalF-Net

4.1. NPNM construction

The main challenge of applying CNNs to mesh geometry pro-
cessing comes from the irregular structures of meshes. Inspired
by the non-local low-rank matrix recovery, we construct a set of
regular NPNMs that can be utilized not only for denoising but
also for flexibly feeding neural networks. In detail, each patch
P (consisting of a given number of mesh facets, say NP) around
a facet is reshaped as a patch-vector, which forms a column of
NPNM, and the Sk − 1 patches with most similar geometry, as
the other columns of NPNM, can be grouped together. Since the
normal vector is three-dimensional, the size of NPNM is NP ×Sk×
3.

4.1.1. Patch grouping
In 3D meshes, a patch P simply denotes the centered facet plus

its NP − 1 neighboring facets (the size of such a patch is NP). The
degree of similarity between these patches can be measured by
the robust normal tensor voting technique.

Tensor Voting: The normal voting tensor for a mesh facet fi is
formulated as the sum of normal covariance matrices from both
fi and its neighboring facets:

T (fi) =

∑
fj∈P

µjnjnT
j , (1)

where P is the associated patch of the facet fi, µj is a weighted
coefficient defined by [49], and nj is the normal of fj in P; T (·) is
symmetric positive semi-definite and can be decomposed as

T (fi) = λ1e1eT1 + λ2e2eT2 + λ3e3eT3, (2)

where λ1 ≥ λ2 ≥ λ3 ≥ 0 are its eigenvalues, and e1, e2, and e3
are the corresponding unit eigenvectors.

We utilize the eigenvalues to measure the geometry similarity
among the patches as [19]

ρi,j = ∥λ1,i − λ1,j∥
2
2 + ∥λ2,i − λ2,j∥

2
2 + ∥λ3,i − λ3,j∥

2
2. (3)

From the above metric, we could cluster Sk − 1 patches with
the most geometry similarity to the patch associated with the
reference facet.

Patch Size and the Number of Similar Patches: We empir-
ically set the patch’s size NP = 16, and find the number of
Sk = 16 of similar patches from the 8-ring neighboring facets
of a reference facet.

4.1.2. Reshaping
Reshaping Order: The reference facet fref is placed at the

first column as the starting facet. Then, one facet from the 1-
ring neighboring facets of fref which is most similar to fref in
terms of Eq. (3), is chosen as the seed facet. Therefore, the 1-ring
neighboring facets can be stacked one by one from this seed facet
in a counter-clockwise order. And we continue to apply the same
operation on the 2-ring neighboring facets until a given number
(i.e., NP) of facets is obtained. Fig. 3 shows the whole pipeline of
how to reshaping a patch and forming NPNM.

Invariant to Rotation: The facet normal orientations in one
patch may be different from the other similar patches. For ex-
ample, Fig. 4 shows a CAD-like model which possesses many

Z. Li, Y. Zhang, Y. Feng et al. / Computer-Aided Design 127 (2020) 102861 5

Fig. 3. Non-local patch-group normal matrix (NPNM) construction. Given a local patch with its center aligned with the reference (centered) facet fref being processed,
we group patches with similar geometry by using the eigenvalues of normal tensor voting. Then, each patch is reshaped as a patch-vector by using the facet normal
as its element from a seed facet to find other facets with a ring-by-ring scheme. Each patch-vector is invariant to global rigid transformation after a simple rotation
operation. Finally, these patch-vectors are constructed as an NPNM, which is very suitable for feeding into the current neural network architectures.

Fig. 4. The facet normal orientations from one patch (e.g., the facets around a
corner) may be different from the other similar patches. To solve this problem,
we use the result of normal voting tensor to make facet normals in each patch
be invariant to rotation.

sharp corners, and one can see that the normal orientation of
each central facet is inconsistent to other central facets from the
corners. To make the facet normals in each patch be invariant to
rotation, we introduce a rotation matrix, denoted as R. Similar
to [13], the rotation matrix consists of three eigenvectors from
normal voting tensor in Eq. (2): R = [e1, e2, e3]. By multiplying
each facet normal with the reverse matrix R−1, all of the normals
in the patch will be aligned. Therefore, the constructed NPNMs
are invariant to rotation.

Remark. We have enlarged the size of NPNM from 16 × 16 to
32 × 32. However, this improves the denoising results slightly
but with a higher computational cost. Fig. 5 shows that there are
very small differences between the two patch sizes on a 3D mesh.
We also obtain similar results on other meshes. Therefore, we
have decided to set the resolution of NPNM to be 16 × 16, which
behaves well in our all experiments.

4.2. Network architecture

Our NormalF-Net consists of two cascaded sub-networks with
a comprehensive loss function which co-operate to denoise and
preserve surface features. In the following, we will introduce the
denoising network and the refinement network, respectively.

4.2.1. Denoising subnetwork
The key idea of NormalF-Net is to mimic the procedure of

low rank recovery by deep learning and further to refine the
normal. Therefore, the denoising subnetwork accepts the noisy
NPNMs and outputs the ground-truth counterparts. Considering
that this matrix-to-matrix regression requires precise pixel level
predictions, the proposed network contains several contracting
blocks and expanding blocks, inspired by U-Net [50]. This design
allows us to aggregate features from multiple dimensions, which
preserves context information and enables precise locations. As
illustrated in Fig. 7, all convolution layers are followed by the
Relu function, except that the last layer applies Tanh to ensure
the output within the range of a unit normal vector. Note that
each normal in the recovered NPNMs (i.e., the output of denoising
subnetwork) is normalized since the NPNM is actually a set of
normal vectors. The loss function is written as

Loss1 =
1

Np × Sk
∥ ∧ (Mt)3 − Mg∥

2
2 (4)

where Mt and Mg are the recovered and the ground-truth NPNMs,
respectively. ∧(·)i denotes the normalization along dimension i.

4.2.2. Refinement subnetwork
Since both noise and geometric details are high frequency

and have similar magnitudes, part of the meshes suffer from
over-smoothing when learning the denoised low-rank matrices
from the noisy NPNMs in the denoising network. To alleviate
this problem, we further propose a refinement subnetwork to
learn the mapping from the recovered matrix Mt to the ground-
truth normal. Benefiting from the powerful ResNet [51] to extract
features and avoid gradient vanishing, we devise the refinement
network as shown in Fig. 6. Specifically, we adopt three residual
blocks to extract features and three fully connected layers to
linearly transform high dimensional features into the feature
space of the normal vectors. Tanh function is applied at the end of
the architecture. In our implementation, we expand the input fea-
tures by concatenating the original NPNMs, which compensates
the information lost in the pixel level denoising.

Let us denotes Nt and Ng as the network output and the
ground-truth normal, respectively. The objective function of our
refinement subnetwork can be written as

Loss2 = ∥ ∧ (Nt) − Ng∥
2
2. (5)

lizhiqi
高亮

6 Z. Li, Y. Zhang, Y. Feng et al. / Computer-Aided Design 127 (2020) 102861

Fig. 5. The visual and numerical differences between the patch sizes of 16 × 16 and 32 × 32 are very slight. The first row shows the mesh geometry, and the
second row shows the mean curvature visualization. The average angular differences to the ground-truth are 23.65◦ (random Gaussian noise of σE = 0.2), 6.21◦

(16 × 16), 6.19◦ (32 × 32).

Fig. 6. The architecture of our neural network, which consists a denoising module (upper) to regress recovered NPNMs, and a refinement module (below) to output
the final normals.

Loss Function: The comprehensive loss function of our cas-
caded two subnetworks can be formulated as

Loss = αLoss1 + (1 − α)Loss2, (6)

where α is a non-negative trade-off weight. In our experiments,
we have found that α = 0.7 provides a good balance between
patch denoising and normal refinement.

4.3. Vertex update

Based on previous obtained facet normals from the refinement
subnetwork, the noisy mesh vertices are updated to match the set
of new normals n̂. According to the iterative approach of [52], we

update the vertices’ positions as follows:

vnewi := voldi +
1

3 |Ω (vi)|

∑
fk∈Ω(vi)

∑
eij∈∂ fk

(
n̂k ·

(
voldj − voldi

))
n̂k (7)

where Ω (vi) is the one-ring neighborhood of vi and eij is the
edge of triangle fk with end vertices vi and vj. This scheme is
essentially a gradient descent method to minimize the semi-
definite quadratic error function. We set the iteration number as
20 in our implementation.

5. Experiment and results

Competitors. To verify the competitive effect of NormalF-
Net, we quantitatively and qualitatively compare it to different

Z. Li, Y. Zhang, Y. Feng et al. / Computer-Aided Design 127 (2020) 102861 7

Fig. 7. The blocks used in our scheme. Max pooling (2,2) means the pooling size
is 2 × 2 and the stride is 2, Conv(k, 64 ∗ 2i−1, s) means the convolution uses a
k×k filter, the channel number is 64∗2i−1 and the stride is s. TConv means the
transposed convolution for up-sampling. (a) Note that the first contracting block
has no max-pooling layer since there is no down-sampling in the first block. (b)
Expanding Block i has two inputs for feature aggregation, the one is from the
same dimension and the other is from the transposed convolution output of
a higher dimension. (c) Residual block i uses one input for feature extraction
and another for down-sampling through 1 × 1 convolution. Similarly, the first
residual block has no 1 × 1 convolution branch.

types of mesh denoising methods, such as the one-step method,
i.e., bilateral mesh denoising (BMF) [15], the optimization-based
method, i.e., L0 minimization mesh denoising (L0) [18], the filter-
based methods, i.e., bilateral normal filtering (BNF) [16], and
guided normal filtering (GNF) [17], the low-rank based method,
i.e., PcFilter [19], and the learning-based methods, i.e., cascaded
normal regression (CNR) [13], and Normal-Net [20]. The results of
L0, BMF, BNF, GNF and CNR are generated from the source codes
released by their authors or implemented by a third party [17],
while the results of Normal-Net and PcFilter are courtesy of the
authors.

5.1. Dataset collection

NormalF-Net has been tested on the repository of CNR [13].
The repository contains four kinds of datasets that possess differ-
ent types and levels of noise, as well as various surface features,
i.e., synthetic, Kinect v1, Kinect v2, and Kinect-Fusion datasets.

For the synthetic dataset, there are 21 meshes for training, and
30 meshes for testing which are further divided into CAD-like
models, smooth models, and models with rich features. All are
added with fixed-scale Gaussian noise to the mesh vertices along
the vertex normal.

For the real-world raw datasets, they come from Microsoft
Kinect, which the noise is introduced by the devices. In detail,
the three datasets are acquired by Microsoft Kinect v1, Microsoft
Kinect v2, and the Kinect-Fusion technique. Moreover, the models
obtained by a high-resolution laser scanner have been used as
noise-free ground truths. The six physical objects to be scanned

Table 1
Ablation study with the error Ea .

CAD Smooth Feature

S1 4.5428 3.4502 5.6627
S2 4.5114 3.4427 5.6032
S3 4.3790 3.4407 5.4010

are called David, Boy, Girl, Big Girl, Cone, and Pyramid, respec-
tively. Following CNR [13], we train our NormalF-Net on the
aforementioned four datasets separately.

5.2. Ablation study

We perform an ablation study to demonstrate the effective-
ness of the denoising-and-normal-refinement architecture of
NormalF-Net. The whole algorithm of NormalF-Net is decom-
posed as

• S1: learning from noisy NPNMs to the ground-truth NPNMs,
and using the median filter in [19] to update facet normals.

• S2: learning from noisy NPNMs to the ground-truth facet
normals.

• S3: our NormalF-Net.

Table 1 shows the average angle differences of the three
schemes. Therefore, we observe that the whole algorithm of
NormalF-Net is more effective than the two decomposed
schemes.

5.3. Comparisons

Synthetic Dataset. There are 63 noisy models, which have 3
million facets in total, and the corresponding 3 million NPNMs for
training. Since there are constantly quite a few facets with similar
local geometric features in a model, to reduce the network com-
putation and save memory resources, we adopt a down-sampling
operation on each model that participates in the training, and
ensure that 500,000 NPNMs are inputed into the network. The
testing dataset contains 90 models with different-level noise and
multi-scale surface features in a total number of 7 million facets.

For training NormalF-Net, we choose the Adam algorithm with
the default settings as the optimization method, the mini-batch
size is 64 and the initial learning rate is 0.0001. The decay of
learning rate occurs at every 400 training steps, for which the
decay rate is 0.95. The training is implemented in Matlab with
Deep Learning Toolbox. Our NormalF-Net is iteratively performed
for three times and each iteration is trained for 5 epochs, which
can yield satisfactory results.

In addition, we also evaluate the performance of each algo-
rithm through following metrics:

• Ea: the average angle difference between the output facet
normals and the ground-truth facet normals.

• Ed: the average one-sided Hausdorff distance from the mesh
reconstructed by the output facet normals to the ground-
truth mesh.

Our NormalF-Net can lead to better visual and numerical
denoising results, which the different scales of surface features
are well-preserved, as shown in Figs. 8, 9, 12, 14.

Denoise feature-rich models. The results of our NormalF-Net
are more faithful to the ground-truths, Fig. 1 first shows the
Armadillo model with varieties of repetitive details, sharp fea-
tures, as well as smooth areas, and results by applying different
methods. Compared with other methods, NormalF-Net recovers
more structures (e.g., palm) and introduces no additional artifacts

8 Z. Li, Y. Zhang, Y. Feng et al. / Computer-Aided Design 127 (2020) 102861

Fig. 8. On a noisy input mesh (b) with its ground-truth (a), we compare our NormalF-Net (j) with the state-of-the-art denoising methods: (c) BMF [15] (n = 15);
(d) BNF [16] (σs = 0.35, n1 = 20, n2 = 10); (e) GNF [17] (σs = 0.35, n1 = 20, n2 = 10); (f) L0 minimization [18] (µ =

√
2, α = 0.1γ , λ = 0.02ℓ2eγ); (g) PcFilter [19]

(σs = 0.35, n1 = 10, n2 = 10); (h) NormalNet [20]; (i) CNR [13]; and (j) our NormalF-Net. From the magnified fragments we can see, NormalF-Net could better
recover the surface details than other denoising methods.

Fig. 9. Denoising of the Fertility model and the Grayloc model, from (a) to (j): (a) ground-truth, (b) the noisy models (the Fertility and the Grayloc with
Gaussian noise of σE = 0.1), (c) BMF [15] (n = 10) (n = 20); (d) BNF [16] (σs = 0.35, n1 = 20, n2 = 10) (σs = 0.35, n1 = 20, n2 = 10); (e)
GNF [17] (σs = 0.35, n1 = 20, n2 = 10) (σs = 0.35, n1 = 20, n2 = 20); (f) L0 minimization [18] (µ =

√
2, α = 0.1γ , λ = 0.02ℓ2eγ); (g) PcFilter [19]

(σs = 0.3, n1 = 2, n2 = 8) (σs = 0.4, n1 = 2, n2 = 8); (h) NormalNet [20]; (i) CNR [13]; and (j) our NormalF-Net.

Z. Li, Y. Zhang, Y. Feng et al. / Computer-Aided Design 127 (2020) 102861 9

Fig. 10. Denoising of the Big Girl model and the Boy model (real scans), from left to right: The ground-truth, the noisy input, BMF [15] (n = 25) (n = 25),
BNF [16] (σs = 0.35, n1 = 20, n2 = 10) (σs = 0.3, n1 = 20, n2 = 10), GNF [17] (σs = 0.35, n1 = 20, n2 = 10) (σs = 0.4, n1 = 20, n2 = 20), L0 minimization [18]
(µ =

√
2, α = 0.1γ , λ = 0.02ℓ2eγ), PcFilter [19] (σs = 0.4, n1 = 10, n2 = 10) (σs = 0.4, n1 = 30, n2 = 20), NormalNet [20], CNR [13], and our NormalF-Net.

Fig. 11. Denoising of the Pyramid model: (a) ground-truth; (b) noisy input (c) BMF [15] (n = 35); (d) BNF [16] (σs = 0.35, n1 = 20, n2 = 10); (e) GNF [17]
(σs = 0.45, n1 = 15, n2 = 10); (f) L0 minimization [18] (µ =

√
2, α = 0.1γ , λ = 0.02ℓ2eγ); (g) PcFilter [19] (σs = 0.45, n1 = 20, n2 = 20); (h) NormalNet [20]; (i)

CNR [13]; and (j) our NormalF-Net.

on these multi-scale features (e.g., sharpening or blurring effects),
while the filter-based methods and optimization-based method
either over-sharpen these palms or over-smooth them. More
examples can be found on Figs. 8 and 14, see particularly the
beard of GandHi model, the eyes of Eros model (Fig. 14 1st row),
and the hair of the Child model (Fig. 14 2nd row), where our
method can better preserve details of these models, while others
are not.

Denoise CAD models. Figs. 9 and 14 fourth-row show the
denoised results of the noisy CAD models. For the noisy Fertility
model and Grayloc model (corrupted by random Gaussian noise
of σE = 0.1), our NormalF-Net recovers more small details
than the others and has no over-blurring effect. For example,
our method preserves the characters of the Grayloc model more
clearly than the BNF, GNF, Normal-Net and CNR. For the Sharp-
sphere model with many curved edges and sharp corners, which
make it challengable to recover them exactly when removing
noise, our method can easily remove such noise around sharp
edges and corners and recover these features better. Note that,
to make the comparison fair, we have fine-tuned the parameters
of the other methods and choose their best results.

Real Scans. Apart from the synthetic data, our NormalF-Net
also outperforms the state-of-the-arts in the challenging real-
world raw data. We further train the network on the real scan
datasets Kinect v1, Kinect v2 and Kinect-Fusion separately. Since
the total number of facets for training is relatively small, the max-
epochs is increased in the dataset to ensure that at least 30,000
training steps are performed. In detail, 5 training epochs are used
for Kinect v1, Kinect v2, and 10 for Kinect-Fusion. The optimiza-
tion method and parameters in training are the same as those
in synthetic dataset. According to visual results in Figs. 10 and
11, our method consistently leads to better results of retaining
surface smoothness and surface features while the others over-
sharpen the features and/or have more bumps on smooth regions.
It is also clearly showed in Fig. 13 that ours are more faithful to
the ground-truth.

5.4. Computational cost

The proposed NormalF-Net is performed on a desktop PC with
a 2.2 GHz Intel Xeon E5-2650 CPU, 64GB RAM and a NVIDIA GTX-
1080Ti. The time performance of all the methods involved in the

10 Z. Li, Y. Zhang, Y. Feng et al. / Computer-Aided Design 127 (2020) 102861

Table 2
Timing (seconds) comparisons with the state-of-the-arts.
Model SharpSphere (Fig. 14-4) Fertility (Fig. 9-1) Grayloc (Fig. 9-2) Eros (Fig. 14-1) Gargoyle (Fig. 5)

Faces 20882 27954 68580 100000 171112

BMF [15] 0.64 0.75 2.55 2.64 7.55

BNF [16] 0.27 0.66 1.38 2.39 3.86

GNF [17] 3.45 4.81 14.77 25.49 51.76

L0 [18] 15.09 27.72 72.75 162.78 158.81

PcFilter [19] 51.63 72.23 172.15 246.47 473.53

NormalNet [20] 836.12 1132.42 5418.27 9163.24 20763.28

CNR [13] 1.27 1.71 3.35 5.16 10.04

NormalF-Net 97.37 109.63 344.76 480.55 975.05

Fig. 12. Comparison with state-of-the-art methods (1–8 correspond to BMF, BNF,
GNF, L0 , PcFilter, NormalNet, CNR, and ours). Bar chart in 1st row: the average
normal angular difference Ea . Bar charts in 2nd row: the average distance Ed .
Each column corresponds to one of the models. Higher bars are truncated for
better illustration.

comparison is shown in Table 2. As we mentioned before, NPNM
is free of complicated voxelization, which claim the superiority
of our NormalF-Net over NormalNet [20]. However, compared
with the filter-based methods BMF [15], BNF [16], GNF [17], and
the learning-based CNR [13] that has been optimized to use the
filter operator, our method is slightly inferior. We have also found
that our NormalF-Net is more time-consuming than L0 [18] and
PcFilter [19].

6. Conclusion and future work

Deep learning, as an effective tool, has been largely em-
ployed in geometric processing tasks. However, few of recent
approaches combines CNNs and geometry domain knowledge
together, which we think it is a challenging but very promising
trend. As one significant type of geometric processing tasks, the
traditional wisdoms of mesh denoising have been developed for
a long time, due to its ill-posedness. By now, few methods can
serve as a mesh denoising panacea: they generate results with a
tradeoff between noise removal and feature preservation.

We have proposed a novel normal filtering neural network
algorithm, called NormalF-Net. NormalF-Net bridges the connec-
tion between CNNs and geometry domain knowledge of non-local
similarity. Different form existing learning-based techniques,
NormalF-Net does not require complicated voxelization and/or
projection operations for regularization, but affords a powerful
denoising ability with preserving surface features. However, we

Fig. 13. Comparison with state-of-the-art methods on the Kinect v1 (1st column)
and Kinect v2 (2nd column) datasets. Bar chart in 1st row: the average normal
angular difference Ea . Bar charts in 2nd row: the average distance Ed . Higher
bars are truncated for better illustration.

have also found that, (1) we could not bring our NormalF-Net’s
superiority into full play on CAD-like models, since they seldom
possess geometry details except sharp edges and corners. All
the methods like NormalNet, CNR, and BNF could well handle
CAD-like models. (2) NormalF-Net has no obvious advantage in
running time, we believe this relates to our current implemen-
tation. The construction of NPNM can be easily accelerated in
parallel with GPU and octree space partition which further speeds
up the retrieval of similar patches. In the future, we will fully
consider the acceleration of NormalF-Net, and make it suitable
for mobile phones as an application tool. We will also employ
the feature descriptor NPNM for other geometry related tasks.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors thank the reviewers for their worthwhile com-
ments. This work was supported by the Key-Area Research and
Development Program of Guangdong Province, China (No.
2019B010149002), the National Natural Science Foundation of
China (No. 61502137), the China Postdoctoral Science Foundation
(No. 2016M592047), and the Shenzhen Science and Technology
Program, China (No. JCYJ20170413162256793).

Z. Li, Y. Zhang, Y. Feng et al. / Computer-Aided Design 127 (2020) 102861 11

Fig. 14. Comparison of denoising approaches on Synthetic models: Eros, Child, Chineselion, and SharpSphere. By using the normal-refinement strategy, our method
behaves well on the high-level noise and preserves surface features better. From the left column to the right: The ground truth; the noisy models (the Eros with
Gaussian noise of σE = 0.2, the Child and Chineselion with Gaussian noise of σE = 0.3, the Sharpsphere with Gaussian noise of σE = 0.1), and the denoising results
from BMF [15] with parameters (n = 12) (n = 10) (n = 10) (n = 15), BNF [16] (σs = 0.45, n1 = 20, n2 = 20) (σs = 0.35, n1 = 20, n2 = 10) (σs = 0.35, n1 =

20, n2 = 10) (σs = 0.35, n1 = 10, n2 = 10), GNF [17] (σs = 0.45, n1 = 20, n2 = 15) (σs = 0.35, n1 = 20, n2 = 10) (σs = 0.35, n1 = 20, n2 = 10) (σs = 0.35, n1 =

20, n2 = 10), L0 minimization [18] (µ =
√
2, α = 0.1γ , λ = 0.02ℓ2eγ), PcFilter [19] (σs = 0.3, n1 = 8, n2 = 10) (σs = 0.35, n1 = 10, n2 = 10) (σs = 0.4, n1 =

20, n2 = 20) (σs = 0.3, n1 = 5, n2 = 8), Normal-Net [20], CNR [13], and our NormalF-Net.

References

[1] Wang J, Gu D, Yu Z, Tan C, Zhou L. A framework for 3D model reconstruc-
tion in reverse engineering. Comput Ind Eng 2012;63(4):1189–200.

[2] Chidambaram S, Zhang Y, Sundararajan V, Elmqvist N, Ramani K. Shape
structuralizer: Design, fabrication, and user-driven iterative refinement of
3D mesh models. In: Proceedings of the 2019 CHI conference on human
factors in computing systems. 2019. p. 663.

[3] Wu J, Wang CCL, Zhang X, Westermann R. Self-supporting rhombic infill
structures for additive manufacturing. Comput Aided Des 2016;80:32–42.

[4] Dong S, Xu K, Zhou Q, Tagliasacchi A, Xin S, Nießner M, et al.
Multi-robot collaborative dense scene reconstruction. ACM Trans Graph
2019;38(4):84:1–84:16.

[5] Yang M, Ye J, Ding F, Zhang Y, Yan D. A semi-explicit surface tracking
mechanism for multi-phase immiscible liquids. IEEE Trans Vis Comput
Graph 2019;25(10):2873–85.

[6] Wang J, Yu Z. A novel method for surface mesh smoothing: Applications
in biomedical modeling. In: Proceedings of the 18th international meshing
roundtable. 2009. p. 195–210.

[7] Wei M, Zhu L, Yu J, Wang J, Pang W, Wu J, et al. Morphology-preserving
smoothing on polygonized isosurfaces of inhomogeneous binary volumes.
Comput Aided Des 2015;58:92–8.

[8] Zhang Y, Hughes TJR, Bajaj CL. Automatic 3D mesh generation for a domain
with multiple materials. In: Proceedings of the 16th international meshing
roundtable. 2007. p. 367–86.

[9] Huang Z, Zou M, Carr N, Ju T. Topology-controlled reconstruc-
tion of multi-labelled domains from cross-sections. ACM Trans Graph
2017;36(4):76:1–76:12.

[10] Huang Q, Flöry S, Gelfand N, Hofer M, Pottmann H. Reassembling fractured
objects by geometric matching. ACM Trans Graph 2006;25(3):569–78.

[11] Yi C, Zhang Y, Wu Q, Xu Y, Remil O, Wei M, et al. Urban build-
ing reconstruction from raw LiDAR point data. Comput Aided Des
2017;93:1–14.

[12] Wang J, Xu K. Shape detection from raw LiDAR data with subspace
modeling. IEEE Trans Vis Comput Graphics 2017;23(9):2137–50.

[13] Wang P, Liu Y, Tong X. Mesh denoising via cascaded normal regression.
ACM Trans Graph 2016;35(6):232:1–232:12.

[14] Wei M, Liang L, Pang W, Wang J, Li W, Wu H. Tensor voting guided mesh
denoising. IEEE Trans Autom Sci Eng 2017;14(2):931–45.

[15] Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising. In: Proceedings
of SIGGRAPH. 2003. p. 950–3.

[16] Zheng Y, Fu H, Au OK-C, Tai C-L. Bilateral normal filtering for mesh
denoising. IEEE Trans Vis Comput Graphics 2011;17(10):1521–30.

[17] Zhang W, Deng B, Zhang J, Bouaziz S, Liu L. Guided mesh normal
filtering. Comput Graph Forum 2015;34(Special Issue of Pacific Graphics
2015):1–12.

[18] He L, Schaefer S. Mesh denoising via l0 minimization. In: SIGGRAPH. 2013.
p. 64:1–8.

[19] Wei M, Huang J, Xie X, Liu L, Wang J, Qin J. Mesh denoising guided by patch
normal co-filtering via kernel low-rank recovery. IEEE Trans Vis Comput
Graph 2019;25(10):2910–26.

http://refhub.elsevier.com/S0010-4485(20)30054-3/sb1
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb1
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb1
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb3
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb3
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb3
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb4
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb4
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb4
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb4
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb4
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb5
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb5
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb5
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb5
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb5
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb7
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb7
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb7
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb7
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb7
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb9
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb9
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb9
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb9
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb9
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb10
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb10
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb10
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb11
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb11
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb11
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb11
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb11
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb12
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb12
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb12
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb13
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb13
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb13
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb14
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb14
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb14
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb16
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb16
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb16
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb17
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb17
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb17
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb17
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb17
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb19
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb19
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb19
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb19
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb19

12 Z. Li, Y. Zhang, Y. Feng et al. / Computer-Aided Design 127 (2020) 102861

[20] Zhao W, Liu X, Zhao Y, Fan X, Zhao D. NormalNet: Learning based guided
normal filtering for mesh denoising. 2019, CoRR abs/1903.04015.

[21] Wang J, Zhang X, Yu Z. A cascaded approach for feature-preserving surface
mesh denoising. Comput Aided Des 2012;44(7):597–610.

[22] Wang P, Fu X, Liu Y, Tong X, Liu S, Guo B. Rolling guidance normal filter
for geometric processing. ACM Trans Graph 2015;34(6):173:1–9.

[23] Zhang J, Deng B, Hong Y, Peng Y, Qin W, Liu L. Static/dynamic filtering for
mesh geometry. IEEE Trans Vis Comput Graph 2019;25(4):1774–87.

[24] Wang R, Yang Z, Liu L, Deng J, Chen F. Decoupling noise and features
via weighted l1-analysis compressed sensing. ACM Trans Graph 2014;33
(2):18.

[25] Zhang H, Wu C, Zhang J, Deng J. Variational mesh denoising using total
variation and piecewise constant function space. IEEE Trans Vis Comput
Graph 2015;21(7):873–86.

[26] Wang J, Huang J, Wang FL, Wei M, Xie H, Qin J. Data-driven geometry-
recovering mesh denoising. Comput Aided Des 2019;114:133–42.

[27] Wei M, Guo X, Huang J, Xie H, Zong H, Kwan R, et al. Mesh defiltering via
cascaded geometry recovery. Comput Graph Forum 2019;38(7):591–605.

[28] Li X, Zhu L, Fu C-W, Heng P-A. Non local low rank normal filtering for
mesh denoising. Comput Graph Forum 2018;37:155–66.

[29] Wang P, Sun C, Liu Y, Tong X. Adaptive O-CNN: a patch-based deep
representation of 3D shapes. ACM Trans Graph 2018;37(6):217:1–217:11.

[30] Jones TR, Durand F, Desbrun M. Non-iterative, feature-preserving mesh
smoothing. ACM Trans Graph 2003;22(3):943–9.

[31] Yagou H, Ohtake Y, Belyaev A. Mesh smoothing via mean and median
filtering applied to face normals. In: Geometric modeling and processing.
Theory and applications. IEEE; 2002, p. 124–31.

[32] Yagou H, Ohtake Y, Belyaev AG. Mesh denoising via iterative alpha-
trimming and nonlinear diffusion of normals with automatic thresholding.
In: Proceedings computer graphics international 2003. IEEE; 2003, p.
28–33.

[33] Shen Y, Barner KE. Surface denoising with directional fuzzy vector median
filtering. In: 2003 international conference on multimedia and expo, vol.
1. IEEE; 2003, p. I–237.

[34] Li T, Wang J, Liu H, Liu L-g. Efficient mesh denoising via robust normal
filtering and alternate vertex updating. Front Inf Technol Electron Eng
2017;18(11):1828–42.

[35] Wei M, Yu J, Pang W, Wang J, Qin J, Liu L, et al. Bi-normal filtering for
mesh denoising. IEEE Trans Vis Comput Graph 2015;21(1):43–55.

[36] Fan H, Yu Y, Peng Q. Robust feature-preserving mesh denoising
based on consistent subneighborhoods. IEEE Trans Vis Comput Graphics
2009;16(2):312–24.

[37] Yadav SK, Reitebuch U, Polthier K. Mesh denoising based on normal
voting tensor and binary optimization. IEEE Trans Vis Comput Graph
2017;24(8):2366–79.

[38] Zhao W, Liu X, Wang S, Fan X, Zhao D. Graph-based feature-preserving
mesh normal filtering. IEEE Trans Vis Comput Graphics 2019.

[39] Wu X, Zheng J, Cai Y, Fu C. Mesh denoising using extended ROF model
with L1 fidelity. Comput Graph Forum 2015;34(7):35–45.

[40] Zhu L, Fu C, Jin Y, Wei M, Qin J, Heng P. Non-local sparse and low-rank
regularization for structure-preserving image smoothing. Comput Graph
Forum 2016;35(7):217–26.

[41] Guo Q, Gao S, Zhang X, Yin Y, Zhang C. Patch-based image inpainting
via two-stage low rank approximation. IEEE Trans Vis Comput Graph
2017;99:1–13.

[42] Zhang L, Zuo W. Image restoration: From sparse and low-rank priors to
deep priors [lecture notes]. IEEE Signal Process Mag 2017;34(5):172–9.

[43] Hou Y, Xu J, Liu M, Liu G, Liu L, Zhu F, et al. NLH: A blind pixel-level
non-local method for real-world image denoising. 2019, arXiv preprint
arXiv:1906.06834.

[44] Chen H, Huang J, Remil O, Xie H, Qin J, Guo Y, et al. Structure-guided
shape-preserving mesh texture smoothing via joint low-rank matrix
recovery. Comput Aided Des 2019;115:122–34.

[45] Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017. p. 652–60.

[46] Roveri R, Öztireli AC, Pandele I, Gross M. Pointpronets: Consolidation of
point clouds with convolutional neural networks. Comput Graph Forum
2018;37(2):87–99.

[47] Chen H, Wei M, Sun Y, Xie X, Wang J. Multi-patch collaborative point cloud
denoising via low-rank recovery with graph constraint. IEEE Trans Vis
Comput Graphics 2019;1. http://dx.doi.org/10.1109/TVCG.2019.2920817.

[48] Boulch A, Marlet R. Deep learning for robust normal estimation in
unstructured point clouds. Comput Graph Forum 2016;35(5):281–90.

[49] Kim HS, Choi HK, Lee KH. Feature detection of triangular meshes based
on tensor voting theory. Comput Aided Des 2009;41(1):47–58.

[50] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for
biomedical image segmentation. In: International conference on medical
image computing and computer-assisted intervention. 2015.

[51] He K, Zhang X, Ren S, Jian S. Deep residual learning for image recognition.
In: 2016 IEEE conference on computer vision and pattern recognition.
2016.

[52] Sun X, Rosin P, Martin R, Langbein F. Fast and effective feature-preserving
mesh denoising. IEEE Trans Vis Comput Graphics 2007;13(5):925–38.

http://refhub.elsevier.com/S0010-4485(20)30054-3/sb20
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb20
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb20
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb21
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb21
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb21
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb22
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb22
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb22
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb23
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb23
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb23
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb24
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb24
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb24
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb24
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb24
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb25
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb25
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb25
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb25
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb25
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb26
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb26
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb26
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb27
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb27
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb27
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb28
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb28
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb28
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb29
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb29
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb29
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb30
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb30
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb30
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb31
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb31
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb31
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb31
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb31
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb32
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb32
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb32
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb32
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb32
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb32
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb32
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb33
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb33
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb33
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb33
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb33
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb34
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb34
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb34
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb34
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb34
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb35
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb35
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb35
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb36
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb36
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb36
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb36
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb36
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb37
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb37
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb37
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb37
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb37
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb38
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb38
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb38
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb39
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb39
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb39
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb40
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb40
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb40
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb40
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb40
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb41
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb41
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb41
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb41
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb41
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb42
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb42
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb42
http://arxiv.org/abs/1906.06834
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb44
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb44
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb44
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb44
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb44
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb46
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb46
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb46
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb46
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb46
http://dx.doi.org/10.1109/TVCG.2019.2920817
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb48
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb48
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb48
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb49
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb49
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb49
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb52
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb52
http://refhub.elsevier.com/S0010-4485(20)30054-3/sb52

	NormalF-Net: Normal Filtering Neural Network for Feature-preserving Mesh Denoising
	Introduction
	Related work
	Filter-based methods
	Optimization-based methods
	Data-driven methods

	Overview
	NormalF-Net
	NPNM construction
	Patch grouping
	Reshaping

	Network architecture
	Denoising subnetwork
	Refinement subnetwork

	Vertex update

	Experiment and results
	Dataset collection
	Ablation study
	Comparisons
	Computational cost

	Conclusion and future work
	Declaration of competing interest
	Acknowledgments
	References

